

SoundScape Renderer User Manual

	General
	Introduction

	Quick Start

	Audio Scenes
	Format

	Coordinate System

	Audio Scene Description Format (ASDF)
	Syntax

	Examples

	IP Interface

	Bug Reports, Feature Requests and Comments

	Contributors

	Your Own Contributions

	Compiling and Running the SSR
	Choosing the Operating System

	The Debian Package

	Getting the Source

	Configuring and Compiling
	Dependencies

	Hints on Configuration

	Installing

	Uninstalling

	Compiling and Installing from the Git Repository

	Running the SSR
	Keyboard actions in non-GUI mode

	Recording the SSR output

	Configuration Files

	Head Tracking
	Preparing InterSense InertiaCube3

	Preparing Polhemus Fastrak/Patriot

	Preparing VRPN

	Using the SSR with different audio clients
	VLC Media Player

	iTunes

	mPlayer

	Mac OS X
	JACK on Mac OS X

	Application Bundle

	Building from Source
	What to install first?
	Homebrew (recommended)

	MacPorts (not recommended)

	MacPorts ports

	Ecasound

	Ecasound – git version

	Standard build

	Build with InterSense tracker support

	Using the GUI

	Running via the Command Line (Terminal)

	Using a Head-Tracker
	Running with InterSense tracker support

	Running with Razor AHRS tracker support

	MS Windows

	Using the SSR with DAWs

	Known Issues (Linux & Mac OS X)
	make dmg on Mac OS X chokes on symbolic links

	SSR crashes with a segmentation fault on Max OS X

	A file that can’t be loaded results in a connection to a live input

	Conflicting JACK and Ecasound versions

	Annoying Ecasound message

	Ecasound cannot open a JACK port

	Using SSR on Mac OS X El Capitan

	Long paths to audio files on Mac OS X

	Segmentation Fault when Opening a Scene

	Choppy Sound on Cheap (On-Board) Sound Cards

	dylibbundler doesn’t grok Qt Frameworks

	SSR for Mac OS X: qt_menu.nib not found

	Compilation Error on Ubuntu and Archlinux

	Polhemus tracker does not work with SSR

	Missing GUI Buttons and Timeline

	OpenGL Linker Error

	IP interface isn’t selected although boost libraries are installed

	Second instance of SSR crashes

	Audio files with spaces

	Error ValueError: unknown locale: UTF-8 when building the manual

	The Renderers
	General
	Reproduction Setups

	A Note on the Timing of the Audio Signals

	Subwoofers

	Distance Attenuation

	Doppler Effect

	Signal Processing

	Binaural Renderer
	The HRIR sets shipped with SSR

	Preparing HRIR sets

	Binaural Room Synthesis Renderer

	Vector Base Amplitude Panning Renderer

	Wave Field Synthesis Renderer
	Prefiltering

	Tapering

	Ambisonics Amplitude Panning Renderer
	Conventional driving function

	In-phase driving function

	Distance-coded Ambisonics Renderer

	Generic Renderer

	Summary

	Graphical User Interface
	General Layout

	Mouse Actions
	Source Properties Dialog

	Keyboard Actions

	Network Interface
	Scene

	State

	Source

	Reference

General

Introduction

The SoundScape Renderer (SSR) is a software framework for real-time
spatial audio reproduction running under GNU/Linux, Mac OS X and
possibly some other UNIX variants. The MS Windows version is experimental.

The current implementation provides:

	Binaural (HRTF-based) reproduction

	Binaural room (re-)synthesis (BRTF-based reproduction)

	Vector Base Amplitude Panning (VBAP)

	Wave Field Synthesis (WFS)

	Ambisonics Amplitude Panning (AAP)

There are also the slightly exotic Generic Renderer, which is essentially a MIMO convolution engine. For each rendering algorithm, there is a separate executable file.

The SSR is intended as versatile framework for the state-of-the-art
implementation of various spatial audio reproduction techniques. You may
use it for your own academic research, teaching or demonstration
activities or whatever else you like. However, it would be nice if you
would mention the use of the SSR by e.g. referencing [Geier2008a] or
[Geier2012].

Note that so far, the SSR only supports two-dimensional reproduction for
any type of renderer. For WFS principally any convex loudspeaker setup
(e.g. circles, rectangles) can be used. The loudspeakers should be
densely spaced. For VBAP circular setups are highly recommended. APA
does require circular setups. The binaural renderer can handle only one
listener at a time.

	Geier2008a

	Matthias Geier, Jens Ahrens, and Sascha Spors. The SoundScape
Renderer: A unified spatial audio reproduction framework for arbitrary
rendering methods. In 124th AES Convention, Amsterdam, The Netherlands,
May 2008 Audio Engineering Society (AES).

	Geier2012

	Matthias Geier and Sascha Spors. Spatial audio reproduction
with the SoundScape Renderer. In 27th Tonmeistertagung – VDT
International Convention, 2012.

Quick Start

After downloading the SSR package, open a shell and use following
commands:

tar xvzf ssr-x.x.x.tar.gz
cd ssr-x.x.x
./configure
make
make install
qjackctl &
ssr my_audio_file.wav

You have to replace x.x.x with the current version number,
e.g. 0.4.0. With above commands you are performing the following
steps:

	Unpack the downloaded tarball containing the source-code.

	Go to the extracted directory 1.

	Configure the SSR.

	Install the SSR.

	Open the graphical user interface for JACK (qjackctl). Please
click “Start” to start the server. As alternative you can start JACK
with

jackd -d alsa -r 44100

See section Running SSR and man jackd for further
options.

	Open the SSR with an audio file of your choice. This can be a
multichannel file.

This will load the audio file my_audio_file.wav and create a virtual
sound source for each channel in the audio file. By default, the SSR
will start with the binaural renderer. Please use headphones to listen
to the generated output!

If you don’t need a graphical user interface and you want to dedicate
all your resources to audio processing, try

ssr --no-gui my_audio_file.wav

For further options, see section Running SSR and
ssr --help.

Audio Scenes

Format

The SSR can open .asd files (refer to section ASDF) as well as
normal audio files. If an audio file is opened, SSR creates an
individual virtual sound source for each channel which the audio file
contains. If a two-channel audio file is opened, the resulting virtual
sound sources are positioned like a virtual stereo loudspeaker setup
with respect to the location of the reference point. For audio files
with more (or less) channels, SSR randomly arranges the resulting
virtual sound sources. All types that ecasound and libsndfile can open
can be used. In particular this includes .wav, .aiff, .flac
and .ogg files.

In the case of a scene being loaded from an .asd file, all audio
files which are associated to virtual sound sources are replayed in
parallel and replaying starts at the beginning of the scene. So far, a
dynamic handling of audio files has not been implemented.

Coordinate System

[image: _images/coordinate_system.png]
The coordinate system used in the SSR.
In ASDF \(\alpha\) and \(\alpha'\) are referred to as azimuth
(refer to section ASDF).

Fig. 1.1 (a) depicts the
global coordinate system used in the SSR. Virtual sound sources as well
as the reference are positioned and orientated with respect to this
coordinate system. For loudspeakers, positioning is a bit more tricky
since it is done with respect to a local coordinate system determined by
the reference. Refer to
Fig. 1.1 (b). The loudspeakers
are positioned with respect to the primed coordinates (\(x'\),
\(y'\), etc.).

The motivation to do it like this is to have a means to virtually move
the entire loudspeaker setup inside a scene by simply moving the
reference. This enables arbitrary movement of the listener in a scene
independent of the physical setup of the reproduction system.

Please do not confuse the origin of the coordinate system with the
reference. The coordinate system is static and specifies absolute
positions.

The reference is movable and is always taken with respect to the current
reproduction setup. The loudspeaker-based methods do not consider the
orientation of the reference point but its location influences the way
loudspeakers are driven. E.g., the reference location corresponds to the
sweet spot in VBAP. It is therefore advisable to put the reference
point to your preferred listening position. In the binaural methods the
reference point represents the listener and indicates the position and
orientation of the latter. It is therefore essential to set it properly
in this case.

Note that the reference position and orientation can of course be
updated in real-time. For the loudspeaker-based methods this is only
useful to a limited extent unless you want to move inside the scene.
However, for the binaural methods it is essential that both the
reference position and orientation (i.e. the listener’s position and
orientation) are tracked and updated in real-time. Refer also to
Sec. Head-Tracking.

Audio Scene Description Format (ASDF)

Besides pure audio files, SSR can also read the current development
version of the Audio Scene Description Format (ASDF) [Geier2008b]. Note,
however,
that so far we have only implemented descriptions of static features.
That means in the current state it is not possible to describe
e.g. movements of a virtual sound source. As you can see in the example
audio scene below, an audio file can be assigned to each virtual sound
source. The replay of all involved audio files is synchronized to the
replay of the entire scene. That means all audio files start at the
beginning of the sound scene. If you fast forward or rewind the scene,
all audio files fast forward or rewind. Note that it is significantly
more efficient to read data from an interleaved multichannel file
compared to reading all channels from individual files.

	Geier2008b

	Matthias Geier, Jens Ahrens, and Sascha Spors. ASDF: Ein XML
Format zur Beschreibung von virtuellen 3D-Audioszenen. In 34rd German
Annual Conference on Acoustics (DAGA), Dresden, Germany, March 2008.

Syntax

The format syntax is quite self-explanatory. See the examples below.
Note that the paths to the audio files can be either absolute (not
recommended) or relative to the directory where the scene file is
stored. The exact format description of the ASDF can be found in the XML
Schema file asdf.xsd.

Find below a sample scene description:

<?xml version="1.0"?>
<asdf version="0.1">
 <header>
 <name>Simple Example Scene</name>
 </header>
 <scene_setup>
 <source name="Vocals" model="point">
 <file>audio/demo.wav</file>
 <position x="-2" y="2"/>
 </source>
 <source name="Ambience" model="plane">
 <file channel="2">audio/demo.wav</file>
 <position x="2" y="2"/>
 </source>
 </scene_setup>
</asdf>

The input channels of a soundcard can be used by specifying the channel
number instead of an audio file, e.g. <port>3</port> instead of
<file>my_audio.wav</file>.

Examples

We provide an audio scene example in ASDF with this release. You find it
in data/scenes/live_input.asd. If you load this file into the SSR it
will create 4 sound sources which will be connected to the first four
channels of your sound card. If your sound card happens to have less
than four outputs, less sources will be created accordingly. More
examples for audio scenes can be downloaded from the SSR website
http://spatialaudio.net/ssr/.

IP Interface

One of the key features of the SSR is an interface which lets you
remotely control the SSR via a TCP socket using XML messages. This
interface enables you to straightforwardly connect any type of
interaction tool from any type of operating system. The format of the
messages sent over the network is still under development and may very
likely change in future versions. Please find some brief information in
section Network.

Bug Reports, Feature Requests and Comments

Please report any bugs, feature requests and comments to
ssr@spatialaudio.net. We will keep
track of them and will try to fix them in a reasonable time. The more
bugs you report the more we can fix. Of course, you are welcome to
provide bug fixes.

Contributors

	Written by:

	Matthias Geier, Jens Ahrens

	Scientific supervision:

	Sascha Spors

	Contributions by:

	Peter Bartz, Florian Hinterleitner, Torben Hohn,
Christoph Hohnerlein, Christoph Hold, Lukas Kaser,
André Möhl, Till Rettberg, David Runge, Fiete Winter

	GUI design:

	Katharina Bredies, Jonas Loh, Jens Ahrens

	Logo design:

	Fabian Hemmert

See also the Github repository https://github.com/soundscaperenderer/ssr for more contributors.

Your Own Contributions

The SSR is thought to provide a state of the art implementation of
various spatial audio reproduction techniques. We therefore would like
to encourage you to contribute to this project since we can not assure
to be at the state of the art at all times ourselves. Everybody is
welcome to contribute to the development of the SSR. However, if you are
planning to do so, we kindly ask you to contact us beforehand (e.g. via
). The SSR is in a rather temporary state and we might apply some
changes to its architecture. We would like to ensure that your own
implementations stay compatible with future versions.

	1

	Note that most relative paths which are mentioned in this document
are relative to this folder, which is the folder where the SSR
tarball was extracted. Therefore, e.g. the src/ directory could
be something like $HOME/ssr-x.x.x/src/ where “x” stands for the
version numbers.

Compiling and Running the SSR

The following sections describe how to build and/or install the SSR on your
computer. The SSR can be used on GNU/Linux and Mac OS X. The MS Windows version of SSR is experimental at this stage.

Choosing the Operating System

Well, first you’ll need a proper operating system.
We recommend Debian GNU/Linux (http://www.debian.org/) or something Debian-based
like Ubuntu (http://www.ubuntu.com/).
The SSR should work on most modern Linux-distributions, though.
You can also try Arch Linux (https://www.archlinux.org/), if you want.
If you are reluctant to install a new operating system on your computer, you can
also install any of the above-mentioned operating systems virtually, for example
using https://www.virtualbox.org/.

If you happen to have Mac OS X installed on your computer, that’s OK, too.

The Debian Package

Thanks to IOhannes m zmoelnig, the SSR is available as a Debian package!

http://packages.debian.org/soundscaperenderer

Note

The Debian distribution comes in several flavors, such as stable [http://www.debian.org/releases/stable/], testing [http://www.debian.org/releases/testing/]
and sid [http://www.debian.org/releases/sid/] (meaning “still in development”).
At the time of writing, the soundscaperenderer package is part of “testing”,
so if you have Debian “stable” installed, you will have to add the package
sources for “testing” (you can try the Debian Sources List Generator [https://debgen.simplylinux.ch/]).
If it still doesn’t work, you should consider upgrading your whole system to
“testing” or, if that’s not feasible, you can still compile and install the
SSR from its source (see below for instructions).

You can install the soundscaperenderer package using your favorite package
manager (apt-get, aptitude, synaptic, …), all dependencies should be
installed automatically.

The package may or may not work on other Debian-based distributions like Ubuntu.
Feel free to try it and report back to us.

Once the SSR is installed, move on to the section Running the SSR.

Getting the Source

If you didn’t receive this manual with the source code of the SSR, you
have to download it from the SSR website http://spatialaudio.net/ssr or from
the git repository. Refer to Section Compiling and Installing from the
Git Repository in the latter case. Otherwise, continue
reading this section.

Once you downloaded the tarball (the file that ends in .tar.gz), unpack it
and change to the newly created directory:

tar xvzf ssr-x.y.z.tar.gz
cd ssr-x.y.z/

Of course, x, y and z should have been replaced by the actual
version number. If you are new to Unix-like operating systems, you should try
shell completion: just start typing the beginning of the command (e.g. tar
xvzf ssr) and hit the Tab-key. Wow, the whole file name gets completed!

Configuring and Compiling

To build the SSR from source you have to configure first. Open a shell
and cd to the directory containing the source code of the package
and type:

./configure

This script will check your system for dependencies and prepare the
Makefile required for compilation. Section
Dependencies lists
the dependencies that must be installed on your system. The
configure script will signal if dependencies are missing. At
successful termination of the configure script a summary will show
up and you are ready to compile. If dependencies for certain modules of SSR
are missing that you are not going to use then you can simply disable the
according module by adding the appropriate argument to the call to the ``
configure`` script so that you do not need to bother with the dependencies.
Examples are

./configure --disable-ip-interface
./configure --disable-gui

See Section Hints on Configuration for details.

If everything went smoothly, you can continue with the next step:

make

This will take some time (maybe a few minutes). If you have a multi-core or
multi-processor computer you can speed up things by specifying the number of
processes you want to use with make -j8 (or any other number that you
choose).

Dependencies

The following list is a list of packages which you should install with the
package manager of your choice (apt-get, aptitude, synaptic, …).
However, if you prefer, you can of course also download everything as source
code and compile each program yourself.

	make

	g++ (at least version 4.7.3) or clang

	libasio-dev

	qtbase5-dev and libqt5opengl5-dev (To build the GUI)

	libecasoundc2.2-dev or libecasoundc-dev

	ecasound

	libxml2-dev

	libfftw3-dev

	libsndfile1-dev

	libjack-dev or libjack-jackd2-dev

	jackd or jackd1 or jackd2

	pkg-config

Extra dependencies for installing from the Git repository:

	libtool

	automake

Note that there are additional dependencies for some of the tracking systems
that SSR supports. Refer to Section Head Tracking for
further information.

To use a different compiler, you can specify it with CXX:

./configure CXX=clang++

Hints on Configuration

If you encounter problems configuring the SSR these hints could help:

	Ensure that you really installed all libraries (lib) with
devel-package (devel or dev, where available) mentioned in
Section Dependencies.

	If your QT5 library cannot be found during configuration,
try running export QT_SELECT=qt5.
If there are problems with qt5’s moc during the build, you might need to add
the corresponding folder (like /usr/local/opt/qt/bin) to your PATH.

	It may be necessary to run ldconfig after installing new
libraries.

	Ensure that /etc/ld.so.conf or LD_LIBRARY_PATH are set
properly, and run ldconfig after changes.

	If a header is not installed in the standard paths of your system you
can pass its location to the configure script using
./configure CPPFLAGS=-Iyourpath.

Note that with ./configure --help all configure-options are
displayed, e.g. in Section “Optional Features” you will find how to
disable compilation of the head trackers and many other things. Setting
the influential environment variables with ./configure VARNAME=value
can be useful for debugging dependencies.

Installing

Until now, everything was happening in the source directory (something like ssr
-x.x.x/). To be really useful, the SSR should be installed on the system with
the command

make install

On some systems you need root privileges for this step. However, it’s easier
if you set up your system to be able to do it as a normal user. On Debian,
it’s enough to add your username to the staff group. Just run this command
(as root or using sudo): adduser myuser staff (replacing myuser by
your actual user name). On other systems you may try something like this (
again, as root or using sudo): chown myuser:myuser /usr/local -R (
again, replacing myuser by your user name).

Uninstalling

If the SSR didn’t meet your expectations, we are very sorry, and of
course you can easily remove it from your system with

make uninstall

Compiling and Installing from the Git Repository

In short, in order to install on your machine, open a terminal, create a
folder that will host the source code, cd to that folder, and type

git clone https://github.com/SoundScapeRenderer/ssr.git

to download the source code. Then execute

./autogen.sh
./configure
make
make install

inside the folder in which SSR resides. You’ll probably have to have root
privileges for the installation. Of course, all dependencies of the
compilation process apply. See Section Dependencies.

Running the SSR

Before you start the SSR, start JACK, e.g. by typing
jackd -d alsa -r 44100 in a shell or using the graphical user
interface “qjackctl”. Now, the easiest way to get a signal out of the
SSR is by passing a sound-file directly:

ssr YOUR_AUDIO_FILE

By default, the SSR starts with the binaural renderer; please use
headphones for listening with this renderer. Type ssr --help to get
an overview of the command line options and various renderers:

USAGE: ssr [OPTIONS] <scene-file>

The SoundScape Renderer (SSR) is a tool for real-time spatial audio
reproduction providing a variety of rendering algorithms.

OPTIONS:

Choose a rendering algorithm:
 --binaural Binaural (using HRIRs)
 --brs Binaural Room Synthesis (using BRIRs)
 --wfs Wave Field Synthesis
 --aap Ambisonics Amplitude Panning
 --dca Distance-coded Ambisonics (experimental!)
 --vbap Stereophonic (Vector Base Amplitude Panning)
 --generic Generic Renderer

Renderer-specific options:
 --hrirs=FILE Load the HRIRs for binaural renderer from FILE
 --hrir-size=VALUE Maximum IR length (binaural and BRS renderer)
 --prefilter=FILE Load WFS prefilter from FILE
-o, --ambisonics-order=VALUE Ambisonics order to use (default: maximum)
 --in-phase-rendering Use in-phase rendering for Ambisonics

JACK options:
-n, --name=NAME Set JACK client name to NAME
 --input-prefix=PREFIX Input port prefix (default: "system:capture_")
 --output-prefix=PREFIX Output port prefix (default: "system:playback_")
-f, --freewheel Use JACK in freewheeling mode

General options:
-c, --config=FILE Read configuration from FILE
-s, --setup=FILE Load reproduction setup from FILE
 --threads=N Number of audio threads (default N=1)
-r, --record=FILE Record the audio output of the renderer to FILE
 --loop Loop all audio files
 --master-volume-correction=VALUE
 Correction of the master volume in dB (default: 0 dB)
 --auto-rotation Auto-rotate sound sources' orientation toward the reference
 --no-auto-rotation Don't auto-rotate sound sources' orientation toward the reference
-i, --ip-server[=PORT] Start IP server (default on)
 A port can be specified: --ip-server=5555
-I, --no-ip-server Don't start IP server
 --end-of-message-character=VALUE
 ASCII code for character to end messages with
 (default 0 = binary zero)
-g, --gui Start GUI (default)
-G, --no-gui Don't start GUI
-t, --tracker=TYPE Start tracker, possible value(s):
 fastrak patriot vrpn razor
 --tracker-port=PORT
 A serial port can be specified, e.g. /dev/ttyS1
-T, --no-tracker Don't start tracker

-h, --help Show this very help information. You just typed that!
-v, --verbose Increase verbosity level (up to -vvv)
-V, --version Show version information and exit

Choose the appropriate arguments and make sure that your amplifiers are
not turned too loud…

To stop the SSR use either the options provided by the GUI (Section
GUI) or type Crtl+c in the shell in which you started the SSR.

Keyboard actions in non-GUI mode

If you start SSR without GUI (option --no-gui), it starts
automatically replaying the scene that you have loaded. You can have some
interaction via the shell. Currently implemented actions are (all
followed by Return):

	c: calibrate tracker (if available)

	p: start playback

	q: quit application

	r: “rewind”; go back to the beginning of the current scene

	s: stop (pause) playback

Note that in non-GUI mode, audio processing is always taking place. Live
inputs are processed even if you pause playback.

Recording the SSR output

You can record the audio output of the SSR using the
--record=FILE command line option. All output signals
(i.e. the loudspeaker signals) will be recorded to a multichannel wav-file
named FILE. The order of channels corresponds to the order of loudspeakers
specifed in the reproduction setup (see Sections
Reproduction Setups and
ASDF). The recording can then be used to analyze the SSR output or
to replay it without the SSR using a software player like “ecaplay” (http://eca.cx/ecasound/).

Configuration Files

The general configuration of the SSR (whether GUI is enabled, which tracker
to use, and most other command line arguments) can be specified in a
configuration file (e.g.
ssr.conf). By specifying your settings in such a file, you avoid
having to give explicit command line options every time you start the
SSR. We have added the example
data/ssr.conf.example,
which mentions
all possible parameters. Take a look inside, it is rather
self-explanatory. There are three possibilities to specify a
configuration file:

Configuration files are loaded in the following order, if certain options are
specified more than once, the last occurrence counts. This means that it is
not the last file that is loaded that counts but rather the last occurrence at
which a given setting is specified.

	/Library/SoundScapeRenderer/ssr.conf

	/etc/ssr.conf

	$HOME/Library/SoundScapeRenderer/ssr.conf

	$HOME/.ssr/ssr.conf

	the path(s) specified with the --config/-c option(s) (e.g.,
ssr -c my_config.file)

We explicitly mention one parameter here that might be of immediate
interest for you: MASTER_VOLUME_CORRECTION. This a correction in
dB (!) that is applied – as you might guess – to the master volume. The
motivation is to have means to adopt the general perceived loudness of
the reproduction of a given system. Factors like the distance of the
loudspeakers to the listener or the typical distance of virtual sound
sources influence the resulting loudness, which can be adjusted to the
desired level by means of the MASTER_VOLUME_CORRECTION. Of course,
there’s also a command line alternative (--master-volume-correction).

Head Tracking

We provide integration of the InterSense InertiaCube3 tracking sensor,
the Polhemus Fastrak and the Polhemus Patriot. They are used to update the orientation of
the reference (in binaural reproduction this is the listener) in
real-time. Please read Sections Preparing Intersense and
Preparing Polhemus if you want to compile the SSR with the
support
for these trackers.

Note that on startup, the SSR tries to find the tracker. If it fails, it
continues without it. If you use a tracker, make sure that you have the
appropriate rights to read from the respective port.

You can calibrate the tracker while the SSR is running by pressing
Return. The instantaneous orientation will then be interpreted as
straight forward, i.e. upwards on the screen (\(\alpha = 90^\circ\)).

Preparing InterSense InertiaCube3

If you want to compile the SSR with support for the InterSense
InertiaCube3 tracking sensor, please download the InterSense Software
Development Kit (SDK) from the InterSense website (http://www.intersense.com;
Support → Downloads → Development and Troubleshooting Tools).
Unpack the archive and place the files

	isense.h and types.h to /usr/local/include, and

	libisense.so (the version appropriate for your processor type) to
usr/local/lib.

The SSR configuration script will automatically detect the presence
of the files described above and if they are found, enable the
compilation for the support of this tracker. To disable this tracker,
use ./configure --disable-intersense and recompile.

If you encounter an error-message similar to
libisense.so: cannot open shared object file: No such file or directory,
but the file is placed correctly, run ldconfig.

Make sure that you have the required access rights to the tracker before
starting SSR. For you are using the USB connection type

sudo chmod a+rw /dev/ttyUSBX

whereby X can be any digit or number. If you are not sure which port is
the tracker then unplug the tracker, type

ls /dev/ttyUSB*

replug the tracker, execute above command again and see which port was added.
That one is the tracker. It’s likely that it is the one whose name contains
the highest number.

Preparing Polhemus Fastrak/Patriot

For incorporation of the Polhemus Fastrak/Patriot
with serial connection, no additional libraries are required. Make sure that
you have the required access rights to the tracker before starting SSR by
typing something like

sudo chmod a+rw /dev/ttyS0

or

sudo chmod a+rw /dev/ttyS1

or so.

If you want to disable this tracker, use ./configure --disable-polhemus
and recompile.

Preparing VRPN

In order to use Virtual Reality Peripheral Network (VRPN [http://www.cs.unc.edu/Research/vrpn/index.html]) compatible
trackers create a config file vrpn.cfg with one of the following lines (or
similar)

vrpn_Tracker_Fastrak MyFastrak /dev/ttyUSB0 115200
vrpn_Tracker_Fastrak MyOtherFastrak COM1 115200
vrpn_Tracker_Liberty MyPatriot /dev/ttyUSB1 115200

… and start vrpn_server. You can choose the name of the Tracker
arbitrarily. Then, start the SSR with the given Tracker name, e.g.:

ssr-binaural --tracker=vrpn --tracker-port=MyFastrak@localhost

If the tracker runs on a different computer, use its hostname (or IP address)
instead of localhost. You can of course select your head tracker settings by
means of Configuration Files.

Using the SSR with different audio clients

This page contains some short description how to connect your own audio files
with the SSR using different audio players.

VLC Media Player

How to connect the SSR in binaural playback mode with the own audio library
using Jack and VLC Media Player:

After installing Jack and the SSR (with all needed components: see :ref:`
Configuring and Compiling <configuring>`) it is necessary to install the VLC
Media Player with its Jack plugin (for example UBUNTU):

	sudo apt-get install vlc vlc-plugin-jack

(or use the packet manager of your choice instead of the command line and
install: vlc and vlc-plugin-jack)

2. After installing open VLC Media Player and navigate to Tools->Preferences
Select “All” on the bottom left corner In the appearing menu on the left
navigate to “Audio”->”Output Module” and extend it by using “+”

3. In the submenu of “Output Module” select “JACK” and replace “system” by ”
Binaural-Renderer” in the “Connect to clients matching”-box. Do not forget to
enable “Automatically connect to writable clients” above. (Otherwise you have
to connect the audio output of vlc with the SSR input after every played audio
file using jack.)

(Note: If you want to use another Renderer, e.g. for WFS, you have to
enter “WFS-Renderer” in the box)

[image: _images/screenshot_vlc.png]

	Save your changes.

	Start everything together using the command line:

qjackctl -s & vlc & ssr --gui /"path_of_your_scene_file(s)"/stereo.asd &

This will start jack, vlc and the ssr with the GUI and a provided stereo
scene (TODO: LINK) (stereo.asd)

	Open an audio file in vlc and press play

iTunes

TODO

mPlayer

TODO

Mac OS X

JACK on Mac OS X

Tested with version 0.87 (64 bit) which includes:

	Jackdmp 1.9.6

	JackRouter 0.9.3

	JackPilot 1.7.0

Note that the site http://www.jackosx.com/ is outdated. The latest version of JACK is
available from http://jackaudio.org/downloads/.

Or, you can install JACK using Homebrew.

If you are using OS X El Capitan or newer, make sure that you are installing the version “jackOSX 0.92_b3” from http://jackaudio.org/downloads/. JACK versions installed from other sources tend not to work on these versions of OS X.

Application Bundle

This assumes that you are using the precompiled SSR application bundle for Mac OS
X. If you want to build the SSR yourself, have a look at Building from Source.

You can download the application bundle from http://spatialaudio.net/ssr. You will need
JACK as prerequisite. Refer to JACK on Mac OS X for instructions how to obtain and
install it.

The installation should be straightforward. Just double-click on the .dmg file and
drag the SoundScapeRenderer-x.x.x folder to your Applications folder. Done. When
double-clicking the SSR application bundle, it will indicate to you that you should
download and install JACK (that’s what this JACK.webloc thingy wants). If JACK is
installed on your computer, then simply ignore this step and drag the SSR folder to your
Applications folder.

The application bundle can be placed anywhere, but spaces in path names might
cause trouble, so it’s better to avoid them. Another thing is that Mac OS X
sort of adds applications placed in the /Applications folder to the
environment, so lets assume you put the SSR there (This also works for
$HOME/Applications).

Under new versions of Mac OS (Sierra and up) the SoundScapeRenderer executable might be stuck in quarantine resulting in files not being loaded properly. The corresponding error message might look like this:

/private/var/folders/_t/67rf88lx507btn91x6g_vfk40000gp/T/AppTranslocation/42F7F94E-AED9-4F39-8647-41D898CCE032/d/SoundScapeRenderer.app/Contents/MacOS/ssr: line 48: 36804 Abort trap: 6 $SSR_EXECUTABLE "${OPTIONS[@]}"

You can allow the SoundScapeRender to run from its original location by running:

xattr -d com.apple.quarantine SoundScapeRenderer.app

The following warning can occur on High Sierra when using the file dialog:

objc[50474]: Class FIFinderSyncExtensionHost is implemented in both /System/Library/PrivateFrameworks/FinderKit.framework/Versions/A/FinderKit (0x7fffa1883c90) and /System/Library/PrivateFrameworks/FileProvider.framework/OverrideBundles/FinderSyncCollaborationFileProviderOverride.bundle/Contents/MacOS/FinderSyncCollaborationFileProviderOverride (0x11f84ccd8). One of the two will be used. Which one is undefined.

It is a bug outside of SSR.

Building from Source

The following is an overview on how to set up the build environment for SSR on Mac OS X.

What to install first?

You can make your life much easier with a decent package manager, name Homebrew (https://brew.sh/) or MacPorts (https://www.macports.org/). Both greatly simplify the process of installing and managing dependencies.

Homebrew (recommended)

After installing homebrew, you can simply run the following line to update homebrew’s
internal repository, upgrade itself and install all necessary dependencies:

brew update && brew upgrade && brew install autoconf fftw libsndfile jack ecasound qt asio --c++11

If Qt is not found by the build system, i.e., if the build system proposes to compile without GUI, then run the following commands (using the according paths on your system) or add them to your ~/.bash_profile file:

export PATH=/usr/local/opt/qt/bin:$PATH
export PKG_CONFIG_PATH=/usr/local/opt/qt/lib/pkgconfig

To build the manual and documentation, you can also install help2man and doxygen:

brew install help2man doxygen
export LC_CTYPE=en_US.UTF-8

On El Capitan and newer OS X versions, it has happened that only the help2man version installed through MacPorts worked properly.

MacPorts (not recommended)

Tested with version 1.9.2

Download here: https://www.macports.org/

Then open a terminal and do an initial ports tree update

sudo port selfupdate

If that is not working it’s most likely because the router won’t let you use
rsync. So we switch to http:

sudo nano /opt/local/etc/macports/sources.conf

Comment out the rsync entry

#rsync://rsync.macports.org/release/ports/ [default]

And add a line

http://www.macports.org/files/ports.tar.gz [default]

Now save the file and try the selfupdate again.

MacPorts ports

These ports have to be installed (dependencies are installed automatically)

	gcc49 (or some other version of GCC, but at least gcc47)

	pkgconfig

	libsndfile

	libsamplerate

	fftw-3-single

	qt5-mac

	libxml2

If you want, you can also use clang instead of GCC to compile the SSR.

If you want to install the newest SSR development version directly from the Git repository, you’ll need those as well:

	autoconf

	automake

	help2man

Ports are installed using

sudo port install <portname>

Because ports are compiled locally, it may take a long time to install all
ports. Issuing one command to install all ports might be more convenient:

sudo sh -c "port install gcc49 && port install pkgconfig && port install libsndfile && port install libsamplerate && port install fftw-3-single && port install qt5-mac && port install libxml2"

Lastly, you need to install the asio library if you want to compile with the network
interface. You can download it from: http://think-async.com

Ecasound

Tested with version 2.7.2

If you don’t want to get Ecasound from Homebrew, then download the source code from
http://www.eca.cx/ecasound/. (If you choose to use Homebrew and you’re experiencing
problems, then you might want to take a look at Ecasound cannot open a JACK port).

It didn’t work with 2.9.0 for us, older versions can be found there:
https://ecasound.seul.org/download/.

In Terminal go into the unpacked ecasound folder and do:

./configure CPPFLAGS=-I/opt/local/include LIBS=-L/opt/local/lib

If JACK cannot be found, you can also try this:

./configure CPPFLAGS="-I/opt/local/include -I/usr/local/include" LIBS=-L/opt/local/lib

When the configure script is finished, check if libsndfile, libsamplerate and
JACK are enabled. It should look something like that:

...

Following features were selected:
...
Libsndfile: yes
...
JACK support: yes
Libsamplerate support yes
...

...

If not, check that JACK and all MacPort packages mentioned above are installed.
If everything looks OK, continue with:

make
make install

For the last step you need write access to /usr/local.
If it doesn’t work, use this instead:

sudo make install

Ecasound – git version

Note: if you successfully installed Ecasound 2.7.2, you don’t need this!

If you want to use the newest Ecasound version from their git repository
(https://ecasound.seul.org/ecasound.git) with OS X 10.9 (Mavericks),
you can try this:

./configure CXX="clang++ -stdlib=libc++" CPPFLAGS=-D_DARWIN_C_SOURCE

Note, however, that you will have to use the same -stdlib options when
configuring the SSR.

Standard build

Get the SSR Source tarball and unpack it where ever you wish, then open a
Terminal window and cd into the newly created folder.

First of all, you have to issue this command in order for pkg-config to
find the installed JACK version:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

You now have two options:

1) If you want to build a clickable application bundle and wrap it into a
.dmg image, you can build the SSR in Mac OS X style:

./configure --enable-app-bundle
make
make dmg

You can also name the .dmg:

./configure
--enable-app-bundle="MyVeryOwnSoundScapeRenderer.dmg"
make
make dmg

The resulting .dmg is output to the SSR source folder. The application
bundle inside contains all non-system dynamic libraries needed by the SSR,
except the JACK libs. So it should run on every Mac OS X 10.6.x with JACK
installed.

2) If you want to build and install in Linux style:

./configure
make
make install

For the last step you need write access in /usr/local. If it doesn’t work,
use this instead:

sudo make install

The binaries do not get wrapped in an application bundle but they will be
installed in /usr/local/bin and some files will be installed in /usr/
local/share/ssr. If you want to remove all these file again, just do:

make uninstall

or (if you used sudo before):

sudo make uninstall

You can start the SSR and pass arguments to the SSR the same way you would do
it on Linux.

Build with InterSense tracker support

Tested with IntertiaCube3, software version 4.17

Get the SDK from http://www.intersense.com/. It should contain a dynamic
library called libisense.dylib and two header files called isense.h
and types.h, respectively.

Put libisense.dylib into /usr/local/lib and the header files into /
usr/local/include/intersense.

Then build like described above, but add CPPFLAGS=-I/usr/local/include/
intersense to the configure parameters:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
./configure CPPFLAGS=-I/usr/local/include/intersense

For some strange reason the full path of libisense.dylib is not written to
the header of the binary. So if you configure with --enable-app-bundle and
then do make dmg to build an application bundle, a tool called
dylibbundler will ask you to enter its path (/usr/local/lib) several
times.

Using the GUI

	Run the JackPilot and hit start.

	Double-click the SoundScape Renderer icon [image: icon], select the renderer type,
and off you go!

When the SSR is started, a Terminal window displaying the standard SSR output
is automatically opened. If the SSR closes with an error, it remains open for
you to inspect the error messages.

The SSR and JACK must have the same sampling rate, otherwise error will be
generated.

More options can be specified by using the config file. The details of using
the config file is described on the Section
Configuration Files.

Running via the Command Line (Terminal)

The application bundle is more convenient, but brings limitations when using
the command line. The included start script changes the working directory to
the directory that includes the SSR application bundle, so only absolute paths
should be used on the command line.

What can be done using configuration files, should be done using configuration
files.

Both JACK and the SSR can be started on the command line by using:

open -a JackPilot
open -a SoundScapeRenderer

If the SSR is placed in /Applications (or $HOME/Applications) and was
run several times already, OS X should find it. If not, you would have to
specify the full path, i.e.

open /Applications/SoundScapeRenderer-0.4.0/SoundScapeRenderer.app

The SSR starts with a prompt for renderer selection, with the default renderer
set on the Binaural renderer. As mentioned above in Section
Configuration Files,
more options at the start up can
be specified using the configuration file.

To start the SSR using a different renderer module and skip the prompt for the
selection do:

open -a SoundScapeRenderer --args --binaural

Of course, instead of --binaural, you can also use any of the other
available renderers (e.g. --wfs for Wave Field Synthesis). To see all
available command line arguments (specifying a renderer skips the prompt for renderer
selection):

open -a SoundScapeRenderer --args --binaural "--help"

Note

The arguments other than the renderer selection have to be enclosed in
quotation marks ("")!

To load a scene do:

open -a SoundScapeRenderer --args --binaural "/absolute/path/to/scene.asd"

Note

Paths have to be absolute!

To load a scene that has spaces in its path name do:

open -a SoundScapeRenderer --args --binaural "/path/to/file\ with\ spaces.asd"

Note

Spaces have to be escaped using backslashes!

In addition to the config files in standard locations mentioned above, you can
also specify a config file on the command line:

open -a SoundScapeRenderer --args --binaural "--config=my_config_file.conf"

When you want to record the output of the SSR and play it back again, you
should always provide the .wav extension of the file name, along with the
absolute path of your desired destination location for the file. As an
example, if you want to run the SSR and record the output to a file name
output.wav, you would need the command given below:

open -a SoundScapeRenderer --args --binaural "--record=/tmp/output.wav"

But if you use a relative path instead of the absolute path, the file that
contains the output of the SSR will be saved inside the directory of the
SoundScape Renderer in the Applications folder.

If you want to start more than one instance of SSR, then add the -n option to the call
of open for all instances other than the first one:

open -n -a SoundScapeRenderer --binaural

Using a Head-Tracker

Running with InterSense tracker support

Due to copyright reasons, the SSR does not come with a built-in InterSense
tracker support. So first you have to build the SSR with InterSense
tracker support yourself or ask someone to do it for
you.

If you are using a USB-to-Serial interface with your tracker, you need to
install drivers for that. This seems to work fine for the interface made by
InterSense: http://www.ftdichip.com/Drivers/VCP.htm

To check if the system sees the tracker do:

ls -l /dev/tty.usb*

On the MacBooks tested, the serial ports were called /dev/tty.usbserial-
00001004 or /dev/tty.usbserial-00002006 depending on which USB port was
used.

To make the SSR use the InterSense tracker with these ports, you have two
options:

Using the command line (only one port can be specified):

open -a SoundScapeRenderer --args --binaural "--tracker=intersense
--tracker-port=/dev/tty.usbserial-XXXXXXXX"

… or using config files:

Add these lines to a config file (multiple ports can be specified):

TRACKER = intersense
TRACKER_PORTS = /dev/tty.usbserial-XXXXXXXX /dev/tty.usbserial-YYYYYYYY

It’s recommended to use the config file approach - best use a global :ref:`
config file<ssr_configuration_file>`.

Running with Razor AHRS tracker support

If you happen not to own a Polhemus or InterSense tracker to do your head-
tracking, an alternative would be to use our DIY low-cost Razor AHRS tracker [https://github.com/Razor-AHRS/razor-9dof-ahrs/wiki/Tutorial].

If you have Arduino installed on you machine, FTDI drivers will be there too.
Otherwise get the driver from http://www.ftdichip.com/Drivers/VCP.htm .

To check if the system sees the tracker do:

ls -l /dev/tty.usb*

This should give you something like /dev/tty.usbserial-A700eEhN.

To make the SSR use this Razor AHRS tracker, you have two options:

Using the command line:

open -a SoundScapeRenderer --args --binaural "--tracker=razor
--tracker-port=/dev/tty.usbserial-XXXXXXXX"

… or using config files:

Add these lines to a config file:

TRACKER = intersense
TRACKER_PORTS = /dev/tty.usbserial-XXXXXXXX

It’s recommended to use the config file approach - best use a global
config file.

MS Windows

The MS Windows version of SSR is experimental at this stage. Find the pre-release of the executables at https://github.com/chris-hld/ssr/releases. Note that this SSR version only works with live inputs currently (it cannot play audio files). It has no limitation otherwise.

Using the SSR with DAWs

As stated before, the SSR is currently not able to dynamically replay
audio files (refer to Section ASDF). If your audio scenes are
complex, you might want to consider using the SSR together with a
digital audio work station (DAW). To do so, you simply have to create as
many sources in the SSR as you have audio tracks in your respective DAW
project and assign live inputs to the sources. Amongst the ASDF examples
we provide on SSR website http://spatialaudio.net/ssr/ you’ll find an scene
description that does exactly this.

DAWs like Ardour (http://www.ardour.org) support JACK and their use is therefore
straightforward. DAWs which do not run on Linux or do not support JACK
can be connected via the input of the sound card.

In the future we will provide a VST plug-in which will allow you to
dynamically operate all virtual source’s properties (like e.g. a
source’s position or level etc.). You will then be able to have the full
SSR functionality controlled from your DAW.

Known Issues (Linux & Mac OS X)

Also visit https://github.com/SoundScapeRenderer/ssr/wiki/Known-Issues for
updated known issues.

make dmg on Mac OS X chokes on symbolic links

On some file system (e.g. network shares with ACLs) you might get an error
like this:

... copy helper ... copy error (canceling): /Volumes/SoundScape Renderer ...
... Operation not supported ... could not access /Volumes/...
hdiutil: create failed - Operation not supported
make[1]: *** [dmg] Error 1
make: *** [dmg] Error 2

This has something to do with symbolic links and the way how hdiutil
handles them. If you get this error, just try to compile the SSR from a
different location. You can do this by either moving all the source files
somewhere else, or by doing something like this:

cd /tmp
mkdir ssr-bundle
cd ssr-bundle
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
$PATH_TO_SSR_SOURCE/configure --enable-app-bundle
make
make dmg

In this example, $PATH_TO_SSR_SOURCE is the directory where you put the
SSR source files. Instead of /tmp you can of course use something else,
but with /tmp it should work on most systems out there.

If you don’t like this work-around, you may also play around with fsaclctl.
Only WAVE_FORMAT_PCM and WAVE_FORMAT_IEEE_FLOAT are supported.

Multi-channel WAV files would normally use the format
WAVE_FORMAT_EXTENSIBLE, see
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html.

However, Ecasound doesn’t know this format, that’s why we have to use one of
the above mentioned formats, although for files with more than 2 channels this
is not compliant to the WAV standard.

To check the exact format of your WAV files, you can use sndfile-info (Debian
package sndfile-programs), and to convert your files, you can use, for
example, sox (Debian package sox) with the wavpcm option:

sox old.wav new.wavpcm
mv new.wavpcm new.wav

SSR crashes with a segmentation fault on Max OS X

If this happens whenever you are opening an audio file or loading a scene that involves opening an audio file, then this might be due to Ecasound. We’ve seen this with the app bundle. Try the following:

Download the Ecasound source code from http://nosignal.fi/ecasound/download.php. Cd into the folder and compile Ecasound with:

./configure
make

Refer also to Ecasound for instructions on how to compile Ecasound. The executable ecasound/ecasound will be created.

Finally, replace the Ecasound executable in the SSR bundle with something like this:

sudo cp ecasound/ecasound /Applications/SoundScapeRenderer-0.4.2-74-gb99f8b2/SoundScapeRenderer.app/Contents/MacOS/

You might have to modify the name of the SSR folder in the above command as you’re likely to use a different version.

A file that can’t be loaded results in a connection to a live input

If there is an error in loading a specified audio file, the corresponding
source is still created and (unexpectedly) connected to the first soundcard
input channel.

We believe this is a bug in the JACK system related to the API function
jack_connect()_: If the destination_port argument is an empty string, the
function returns (correctly) with an error. However, if the source_port
argument is an empty string, the port is connected to the first “system” port (
or the first port at all, or who knows …). And this is the case if the SSR
cannot open a specified audio file.

If you also think that’s a bug, feel free to report it to the JACK developers.

Conflicting JACK and Ecasound versions

There is a problem due to a special combination of ecasound and JACK versions
on 64 bit systems leading to an error (terminating the SSR) similar to this:

 (ecasoundc_sa) Error='read() error', cmd='cs-connect' last_error='' cmd_cnt=6
last_cnt=5.

We experienced this error on 64 bit systems with ecasound version 2.4.6.1 and 2
.7.0 in combination with JACK version 0.118.0. A similar error occured on Mac
OS X with ecasound version 2.7.2 and JackOSX version 0.89 (with Jackdmp 1.9.8).

Please try to update to the newest ecasound and JACK versions.

Annoying Ecasound message

You may have seen this message:

* Message from libecasoundc:
*
* 'ECASOUND' environment variable not set. Using the default value
* value 'ECASOUND=ecasound'.

You can totally ignore this, but if it bothers you, you can disable it easily
by specifying the following line in /etc/bash.bashrc (system-wide setting)
or, if you prefer, you can put it into your $HOME/.bashrc
(just for your user account):

export ECASOUND=ecasound

Ecasound cannot open a JACK port

Sometimes, when Ecasound is installed via Homebrew, it can have trouble finding JACK. As
a result SSR displays the sound source symbols in the GUI, but they don’t play audio, and
an according error message is posted in the SSR terminal.

Type ecasound -c in a terminal to start Ecasound in interactive mode.
Then type aio-register to list all available outputs that Ecasound has recognized. If
JACK is not listed, then download the Ecasound source code from
http://nosignal.fi/ecasound/download.php, and

./configure --enable-jack
make
make install

The last line might have to be

sudo make install

Refer also to Ecasound for instructions on how to compile Ecasound.

Using SSR on Mac OS X El Capitan

SSR works well on El Capitan. JACK is what can cause headache. See JACK on Mac OS X .

Long paths to audio files on Mac OS X

It can happen that SSR displays this error message when loading audio files directily:

Error: AudioPlayer::Soundfile: ERROR: Connecting chainsetup failed: "Enabling chainsetup: AUDIOIO-JACK: Unable to open JACK-client" (audioplayer.cpp:310)
Warning: AudioPlayer: Initialization of soundfile '/Users/YOUR_USERNAME/Documents/audio/YOUR_AUDIO_FILE.wav' failed! (audioplayer.cpp:87)

Opening such a file would result in a JACK port name that is too long. You can resolve
this limitation by moving the audio file to a location that produces a shorter (full) path
name or by wrapping the audio file in an asd-file.

Segmentation Fault when Opening a Scene

This problem occured on some old SuSE systems.

When you start the SSR with GUI, everything is alright at first. As soon as
you open a scene, a segmentation fault arises. This is a problem in the
interaction between Qt and OpenGL. As a workaround, comment the line

renderText(0.18f * scale, 0.13f * scale, 0.0f, source->name.c_str(), f);

in the file src/gui/qopenglrenderer.cpp and recompile the code. The
consequence is that the names of the sound sources will not be displayed
anymore.

Choppy Sound on Cheap (On-Board) Sound Cards

Sometimes JACK doesn’t play well with those on-board sound cards. One
possibility to improve this, is to increase the frames/period setting from the
default 2 to a more generous 3. This can be done in the Settings dialog of
qjackctl or with the command line option -n:

jackd -n 3

dylibbundler doesn’t grok Qt Frameworks

If make dmg doesn’t copy the Qt .dylib files into the application
bundle (to Contents/Libraries), you might try the following commands (or
similar, depending on the exact Qt installation).

install_name_tool -id /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/QtCore.framework/QtCore
install_name_tool -id /opt/local/lib/libQtGui.dylib /opt/local/Library/Frameworks/QtGui.framework/QtGui
install_name_tool -change /opt/local/Library/Frameworks/QtCore.framework/Versions/5/QtCore /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/QtGui.framework/QtGui
install_name_tool -id /opt/local/lib/libQtOpenGL.dylib /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
install_name_tool -change /opt/local/Library/Frameworks/QtCore.framework/Versions/5/QtCore /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
install_name_tool -change /opt/local/Library/Frameworks/QtGui.framework/Versions/5/QtGui /opt/local/lib/libQtGui.dylib /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL

You need the appropriate rights to change the library files, so you probably
need to use sudo before the commands.

WARNING: You can totally ruin your Qt installation with this stuff!

To get some information about a library, you can try something like those:

otool -L /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
otool -l /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
otool -D /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL

SSR for Mac OS X: qt_menu.nib not found

This was fixed in MacPorts, see https://trac.macports.org/ticket/37662. Thanks to Chris Pike!
Since version 0.5 (switching to qt5), qt_menu.nib is not needed any more.

Compilation Error on Ubuntu and Archlinux

This issue was resolved in version 0.3.4. Some newer distributions got more
picky about the necessary #include commands. If the SSR refuses to
compile, add this to the file src/gui/qopenglplotter.h (somewhere at the
beginning):

#include <GL/glu.h>

On Mac OS X you’ll need this instead:

#include <OpenGL/glu.h>

Polhemus tracker does not work with SSR

This issue was resolved in version 0.3.3, where we changed the tracker
selection. Use --tracker=fastrak, --tracker=patriot and --tracker=intersense,
respectively. The serial port can be specified with --tracker-port=/dev/
ttyUSB0 (or similar).

This can happen when both the Intersense tracker as well as the Polhemus
tracker are compiled and the file isports.ini is present. The latter tells
the Intersense tracker which port to use instead of the standard serial port
/dev/ttyS0. If the isports.ini file lists the port to which the
Polhemus tracker is connected, it can happen that something that we have not
fully understood goes wrong and the Pohlemus data can not be read. In this
case you can either rename the file isports.ini or change its content.

It might be necessary to execute echo C > /dev/ttyS0 several times in
order to make Polhemus Fastrak operational again. Use echo -e "C\r" > /dev/ttyS0 for Polhemus Patriot. You can check with cat /dev/ttyS0 if it delivers data.

Missing GUI Buttons and Timeline

This issue was resolved in version 0.3.2, the default setting for --enable-floating-control-panel is chosen depending on the installed Qt version.
As of version 0.5 (switching to qt5), the floating control panel is always enabled.

Different versions of Qt show different behaviour regarding OpenGL Overlays
and as a result, the GUI buttons are not shown in newer Qt versions.

To overcome this limitation, we provide two GUI variants:

	Traditional GUI, can be used up to Qt 4.6.x

	Floating control panel, which is used with Qt 4.7 and above

The floating control panel is the default setting on Mac OS X, for Linux it
can be activated with:

./configure --enable-floating-control-panel

OpenGL Linker Error

This issue was resolved in version 0.3.2.

On some systems, after running make, you’ll get an error mentioning ”
glSelectBuffer”.

For now, this is the solution (see also the issue below):

./configure LIBS=-lGL

IP interface isn’t selected although boost libraries are installed

This issue was resolved with dropping boost::asio for asio in version 0.5.0.

For older builds, you might need to add the -lpthread flag:

./configure LIBS=-lpthread

Second instance of SSR crashes

This happens when two or more instances of the SSR are started with the IP server enabled.
Start all (or at least all instances higher than 1) with the -I flag to disable the
IP interface.

Audio files with spaces

This issue was resolved in version 0.3.2.

Please do not use audio files with spaces for scenes. Neither the filename nor
the directory referenced in the scene (asd-file) should contain spaces.

Error ValueError: unknown locale: UTF-8 when building the manual

This can happen on non-US Macs. Go to your home folder /Users/YOUR_USER_NAME, open (or
create) the file .bash_profile and add the following to this file:

export LC_ALL=en_US.UFT-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
export LC_CTYPE=en_US.UTF-8

You might have to re-open the terminal or log out and in again to see the effect.

The Renderers

General

Reproduction Setups

The geometry of the actual reproduction setup is specified in .asd
files, just like sound scenes. By default, it is loaded from the file
/usr/local/share/ssr/default_setup.asd. Use the --setup command
line option to load another reproduction setup file. Note that the
loudspeaker setups have to be convex. This is not checked by the SSR.
The loudspeakers appear at the outputs of your sound card in the same
order as they are specified in the .asd file, starting with channel
1.

A sample reproduction setup description:

<?xml version="1.0"?>
<asdf version="0.1">
 <header>
 <name>Circular Loudspeaker Array</name>
 </header>
 <reproduction_setup>
 <circular_array number="56">
 <first>
 <position x="1.5" y="0"/>
 <orientation azimuth="-180"/>
 </first>
 </circular_array>
 </reproduction_setup>
</asdf>

We provide the following setups in the directory
data/reproduction_setups/:

	2.0.asd: standard stereo setup at 1.5 mtrs distance

	2.1.asd: standard stereo setup at 1.5 mtrs distance plus
subwoofer

	5.1.asd: standard 5.1 setup on circle with a diameter of 3 mtrs

	rounded_rectangle.asd: Demonstrates how to combine circular arcs
and linear array segments.

	circle.asd: This is a circular array of 3 mtrs diameter composed
of 56 loudspeakers.

	loudspeaker_setup_with_nearly_all_features.asd: This setup
describes all supported options, open it with your favorite text
editor and have a look inside.

There is some limited freedom in assigning channels to
loudspeakers: If you insert the element <skip number="5"/>, the
specified number of output channels are skipped and the following
loudspeakers get higher channel numbers accordingly.

Of course, the binaural and BRS renderers do not load a loudspeaker
setup. By default, they assume the listener to reside in the coordinate
origin looking straight forward.

A Note on the Timing of the Audio Signals

The WFS renderer is the only renderer in which the timing of the audio
signals is somewhat peculiar. None of the other renderers imposes any
algorithmic delay on individual source signals. Of course, if you use a
renderer that is convolution based such as the BRS renderer, the
employed HRIRs do alter the timing of the signals due to their inherent
properties.

This is different with the WFS renderer. Here, also the propagation
duration of sound from the position of the virtual source to the
loudspeaker array is taken into account. This means that the farther a virtual
source is located, the longer is the delay imposed on its input signal.
This also holds true for plane waves: Theoretically, plane waves do
originate from infinity. Though, the SSR does consider the origin point
of the plane wave that is specified in ASDF. This origin point also
specifies the location of the symbol that represents the respective
plane wave in the GUI.

We are aware that this procedure can cause confusion and reduces the
ability of a given scene of translating well between different types of
renderers. In the upcoming version 0.4 of the SSR we will implement an
option that will allow you specifying for each individual source whether
the propagation duration of sound shall be considered by a renderer or
not.

Subwoofers

All loudspeaker-based renderers support the use of subwoofers. Outputs of the
SSR that are assigned to subwoofers receive a signal having full bandwidth. So,
you will have to make sure yourself that your system lowpasses these signals
appropriately before they are emitted by the subwoofers.

You might need to adjust the level of your subwoofer(s) depending on the
renderers that you are using as the overall radiated power of the normal
speakers cannot be predicted easily so that we cannot adjust for it
automatically. For example, no matter of how many loudspeakers your setup is
composed of the VBAP renderer will only use two loudspeakers at a time to
present a given virtual sound source. The WFS renderer on the other hand might
use 10 or 20 loudspeakers, which can clearly lead to a different sound pressure
level at a given receiver location.

For convenience, ASDF allows for specifying permantent weight for loudspeakers
and subwoofers using the weight attribute:

<loudspeaker model="subwoofer" weight="0.5">
 <position x="0" y="0"/>
 <orientation azimuth="0"/>
</loudspeaker>

weight is a linear factor that is always applied to the signal of this
speaker. Above example will obviously attenuate the signal by approx. 6 dB. You
can use two ASDF description for the same reproduction setup that
differ only with respect to the subwoofer weights if you’re using different
renderers on the same loudspeaker system.

Distance Attenuation

Note that in all renderers – except for the BRS and generic renderers –, the
distance attenuation in the virtual space is \(\frac{1}{r}\) with respect
to the distance \(r\) of the respective virtual point source to the
reference position. Point sources closer than 0.5 m to the reference position
do not experience any increase of amplitude. Virtual plane waves do not
experience any algorithmic distance attenuation in any renderer.

You can specify your own preferred distance attenuation exponent \(exp\)
(in \(\frac{1}{r^{exp}}\)) either via the command line argument
--decay-exponent=VALUE or the configuration option DECAY_EXPONENT (see
the file data/ssr.conf.example). The higher the exponent, the faster is the
amplitude decay over distance. The default exponent is
\(exp = 1\) 1. Fig. 3.1 illustrates the effect
of different choices of the exponent. In simple words, the smaller the exponent
the slower is the amplitude decay over distance. Note that the default decay of
\(\frac{1}{r}\) is theoretically correct only for infinitessimally small
sound sources. Spatially extended sources, like most real world sources, exhibit
a slower decay. So you might want to choose the exponent to be somewhere between
0.5 and 1. You can completely suppress any sort of distance attenuation by
setting the decay exponent to 0.

The amplitude reference distance, i.e. the distance from the reference
at which plane waves are as loud as the other source types (like point
sources), can be set in the SSR configuration file
(Section Configuration File). The desired
amplitude reference distance for a given sound scene can be specified in
the scene description (Section ASDF). The default value is 3 m.

The overall amplitude normalization is such that plane waves always exhibit the
same amplitude independent of what amplitude reference distance and what decay
exponent have been chosen. Consequently, also virtual point source always
exhibit the same amplitude at amplitude reference distance, whatever it has
been set to.

[image: _images/distance_attenuation.png]
Illustration of the amplitude of virtual point sources as a function of
source distance from the reference point for different exponents
\(exp\). The exponents range from 0 to 2 (black color to gray color).
The amplitude reference distance is set to 3 m. Recall that sources
closer than 0.5 m to the reference position do not experience any further
increase of amplitude.

	1

	A note regarding previous versions of the WFS renderer: In the present SSR
version, the amplitude decay is handled centrally and equally for all
renderers that take distance attenuation into account (see Table
2). Previously, the WFS renderer relied on the distance
attenuation that was inherent to the WFS driving function. This amplitude
decay is very similar to an exponent of 0.5 (instead of the current default
exponent of 1.0). So you might want to set the decay exponent to 0.5 in WFS
to make your scenes sound like they used to do previously.

Doppler Effect

In the current version of the SSR the Doppler Effect in moving sources
is not supported by any of the renderers.

Signal Processing

All rendering algorithms are implemented on a frame-wise basis with an
internal precision of 32 bit floating point. The signal processing is
illustrated in Fig. 3.2.

The input signal is divided into individual frames of size nframes,
whereby nframes is the frame size with which JACK is running. Then
e.g. frame number \(n+1\) is processed both with previous rendering
parameters \(n\) as well as with current parameters \(n+1\).
It is then crossfaded between both processed frames with cosine-shaped
slopes. In other words the effective frame size of the signal processing
is \(2\cdot\)nframes with 50% overlap. Due to the
fade-in of the frame processed with the current parameters \(n+1\),
the algorithmic latency is slightly higher than for processing done with
frames purely of size nframes and no crossfade.

[image: _images/signal_processing.png]
Illustration of the frame-wise signal processing
as implemented in the SSR renderers (see text)

The implementation approach described above is one version of the
standard way of implementing time-varying audio processing. Note however
that this means that with all renderers, moving sources are not
physically correctly reproduced. The physically correct reproduction of
moving virtual sources as in [Ahrens2008a] and [Ahrens2008b] requires a
different implementation
approach which is computationally significantly more costly.

	Ahrens2008a

	Jens Ahrens and Sascha Spors. Reproduction of moving virtual
sound sources with special attention to the doppler effect. In 124th
Convention of the AES, Amsterdam, The Netherlands, May 17–20, 2008.

	Ahrens2008b

	Jens Ahrens and Sascha Spors. Reproduction of virtual sound
sources moving at supersonic speeds in Wave Field Synthesis. In 125th
Convention of the AES, San Francisco, CA, Oct. 2–5, 2008.

Binaural Renderer

Executable: ssr-binaural

Binaural rendering is an approach where the acoustical influence of the
human head is electronically simulated to position virtual sound sources
in space. Be sure that you are using headphones to listen.

The acoustical influence of the human head is coded in so-called
head-related impulse responses (HRIRs) or equivalently by head-related transfer functions.
The HRIRs are loaded from the file /usr/local/share/ssr/default_hrirs.wav. If you want
to use different HRIRs then use the --hrirs=FILE command line option or the
SSR configuration file
(Section Configuration File) to specify
your custom location. The SSR connects its outputs automatically to
outputs 1 and 2 of your sound card.

For virtual sound sources that are closer to the reference position (=
the listener position) than 0.5 m, the HRTFs are interpolated with a
Dirac impulse. This ensures a smooth transition of virtual sources from
the outside of the listener’s head to the inside.

SSR uses HRIRs with an angular resolution of \(1^\circ\). Thus,
the HRIR file contains 720 impulse responses (360 for each ear) stored
as a 720-channel .wav-file. The HRIRs all have to be of equal length and
have to be arranged in the following order:

	1st channel: left ear, virtual source position \(0^\circ\)

	2nd channel: right ear, virtual source position \(0^\circ\)

	3rd channel: left ear, virtual source position \(1^\circ\)

	4th channel: right ear, virtual source position \(1^\circ\)

	…

	720th channel: right ear, virtual source position \(359^\circ\)

If your HRIRs have lower angular resolution you have to interpolate them
to the target resolution or use the same HRIR for serveral adjacent
directions in order to fulfill the format requirements. Higher
resolution is not supported. Make sure that the sampling rate of the
HRIRs matches that of JACK. So far, we know that both 16bit and 24bit
word lengths work.

The SSR automatically loads and uses all HRIR coefficients it finds in
the specified file. You can use the --hrir-size=VALUE command line
option in order to limit the number of HRIR coefficients read and used
to VALUE. You don’t need to worry if your specified HRIR length
VALUE exceeds the one stored in the file. You will receive a warning
telling you what the score is. The SSR will render the audio in any
case.

The actual size of the HRIRs is not restricted (apart from processing
power). The SSR cuts them into partitions of size equal to the JACK
frame buffer size and zero-pads the last partition if necessary.

Note that there’s some potential to optimize the performance of the SSR
by adjusting the JACK frame size and accordingly the number of
partitions when a specific number of HRIR taps are desired. The least
computational load arises when the audio frames have the same size like
the HRIRs. By choosing shorter frames and thus using partitioned
convolution the system latency is reduced but computational load is
increased.

The HRIR sets shipped with SSR

SSR comes with two different HRIR sets: FABIAN and KEMAR (QU). The differ with respect to
the manikin that was used in the measurement (FABIAN vs. KEMAR). The reference for the
FABIAN measurement is [Lindau2007], and the reference for the KEMAR (QU) is
[Wierstorf2011]. The low-frequency extension from [SpatialAudio] has been applied to the
KEMAR (QU) HRTFs.

You will find all sets in the folder data/impulse_responses/hrirs/.
The suffix _eq in the file name indicates the equalized data. The unequalized data is
of course also there. See the file
data/impulse_responses/hrirs/hrirs_fabian_documentation.pdf for a few more details on
the FABIAN measurement.

Starting with SSR release 0.5.0, the default HRIR set that is loaded is headphone
compensated, i.e., we equalized the HRIRs a bit in order to compensate for the alterations
that a typical pair of headphones would apply to the ear signals. Note that by design,
headphones do not have a flat transfer function. However, when performing binaural
rendering, we need the headphones to be transparent. Our equalization may not be
perfect for all headphones or earbuds as these can exhibit very different properties
between different models.

We chose a frequency sampling-based minimum-phase filter design. The transfer functions
and impulse responses of the two compensation filters are depicted in Fig. 3.3. The impulse responses themselves can be found in the same folder
like the HRIRs (see above). The length is 513 taps so that the unequalized
HRIRs are 512 taps long, the equalized ones are 1024 taps long.

[image: _images/hrir_comp_filters.png]
Magnitude transfer functions and impulse responses of the headphone compensation /
equalization filters

Recall that there are several ways of defining which HRIR set is loaded, for example the
HRIR_FILE_NAME in the SSR configuration files property,
or the command line option --hrirs=FILE.

	Lindau2007

	Alexander Lindau and Stefan Weinzierl. FABIAN - Schnelle
Erfassung binauraler Raumimpulsantworten in mehreren Freiheitsgraden. In
Fortschritte der Akustik, DAGA Stuttgart, 2007.

	Wierstorf2011

	Hagen Wierstorf, Matthias Geier, Alexander Raake, and Sascha Spors. A
Free Database of Head-Related Impulse Response Measurements in the Horizontal Plane
with Multiple Distances. In 130th Convention of the Audio Engineering Society (AES),
May 2011.

	SpatialAudio

	https://github.com/spatialaudio/lf-corrected-kemar-hrtfs (commit 5b5ec8)

Preparing HRIR sets

You can easily prepare your own HRIR sets for use with the SSR by
adopting the MATLAB script data/matlab_scripts/prepare_hrirs_cipic.m
to your needs. This script converts the HRIRs of the KEMAR manikin
included in the CIPIC database [AlgaziCIPIC] to the format that the SSR
expects. See the script for further information and how to obtain the raw HRIRs. Note that
the KEMAR (CIPIC) HRIRs are not identical to the KEMAR (QU) ones.

	AlgaziCIPIC

	V. Ralph Algazi. The CIPIC HRTF database.
https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/.

Binaural Room Synthesis Renderer

Executable: ssr-brs

The Binaural Room Synthesis (BRS) renderer is a binaural renderer (refer
to Section Binaural Renderer) which uses one
dedicated
HRIR set of each individual sound source. The motivation is to have more
realistic reproduction than in simple binaural rendering. In this
context HRIRs are typically referred to as binaural room impulse
responses (BRIRs).

Note that the BRS renderer does not consider any specification of a
virtual source’s position. The positions of the virtual sources
(including their distance) are exclusively coded in the BRIRs.
Consequently, the BRS renderer does not apply any distance attenuation.
It only applies the respective source’s gain and the master volume. No
interpolation with a Dirac as in the binaural renderer is performed for
very close virtual sources. The only quantity which is explicitely
considered is the orientation of the receiver, i.e. the reference.
Therefore, specification of meaningful source and receiver positions is
only necessary when a correct graphical illustration is desired.

The BRIRs are stored in the a format similar to the one for the HRIRs
for the binaural renderer (refer to
Section Binaural Renderer). However, there is a
fundamental difference: In order to be consequent, the different
channels do not hold the data for different positions of the virtual
sound source but they hold the information for different head
orientations. Explicitely,

	1st channel: left ear, head orientation \(0^\circ\)

	2nd channel: right ear, head orientation \(0^\circ\)

	3rd channel: left ear, head orientation \(1^\circ\)

	4th channel: right ear, head orientation \(1^\circ\)

	…

	720th channel: right ear, head orientation \(359^\circ\)

In order to assign a set of BRIRs to a given sound source an appropriate
scene description in .asd-format has to be prepared (refer also to
Section Audio Scenes). As shown in brs_example.asd
(from the example scenes), a virtual source has the optional property
properties_file which holds the location of the file containing the
desired BRIR set. The location to be specified is relative to the folder
of the scene file. Note that – as described above – specification of the
virtual source’s position does not affect the audio processing. If you
do not specify a BRIR set for each virtual source, then the renderer
will complain and refuse processing the respective source.

We have measured the BRIRs of the FABIAN
manikin in one of our mid-size meeting rooms called Sputnik with 8
different source positions. Due to the file size, we have not included
them in the release. You can obtain the data from [BRIRs].

	BRIRs

	The Sputnik BRIRs can be obtained from here: https://dev.qu.tu-berlin.de/projects/measurements/wiki/Impulse_Response_Measurements.
More BRIR repositories are compiled here: http://www.soundfieldsynthesis.org/other-resources/#impulse-responses.

Vector Base Amplitude Panning Renderer

Executable: ssr-vbap

The Vector Base Amplitude Panning (VBAP) renderer uses the algorithm
described in [Pulkki1997]. It tries to find a loudspeaker pair between which
the phantom source is located (in VBAP you speak of a phantom source rather
than a virtual one). If it does find a loudspeaker pair whose angle is
smaller than \(180^\circ\) then it calculates the weights
\(g_l\) and \(g_r\) for the left and right loudspeaker as

\[g_{l,r} = \frac{\cos\phi \sin \phi_0 \pm \sin \phi \cos \phi_0}
{2\cos \phi_0 \sin \phi_0}.\]

\(\phi_0\) is half the angle between the two loudspeakers with
respect to the listening position, \(\phi\) is the angle between the
position of the phantom source and the direction “between the
loudspeakers”.

If the VBAP renderer can not find a loudspeaker pair whose angle is
smaller than \(180^\circ\) then it uses the closest loudspeaker
provided that the latter is situated within \(30^\circ\). If not,
then it does not render the source. If you are in verbosity level 2
(i.e. start the SSR with the -vv option) you’ll see a notification
about what’s happening.

Note that all virtual source types (i.e. point and plane sources) are
rendered as phantom sources.

Contrary to WFS, non-uniform distributions of loudspeakers are ok here.
Ideally, the loudspeakers should be placed on a circle around the
reference position. You can optionally specify a delay for each
loudspeakers in order to compensate some amount of misplacement. In the
ASDF (refer to Section ASDF), each loudspeaker has the optional
attribute delay which determines the delay in seconds to be applied
to the respective loudspeaker. Note that the specified delay will be
rounded to an integer factor of the temporal sampling period. With 44.1
kHz sampling frequency this corresponds to an accuracy of 22.676
\(\mu\)s, respectively an accuracy of 7.78 mm in terms of
loudspeaker placement. Additionally, you can specify a weight for each
loudspeaker in order to compensate for irregular setups. In the ASDF
format (refer to Section ASDF), each loudspeaker has the optional
attribute weight which determines the linear (!) weight to be
applied to the respective loudspeaker. An example would be

<loudspeaker delay="0.005" weight="1.1">
 <position x="1.0" y="-2.0"/>
 <orientation azimuth="-30"/>
</loudspeaker>

Delay defaults to 0 if not specified, weight defaults to 1.

Although principally suitable, we do not recommend to use our amplitude
panning algorithm for dedicated 5.1 (or comparable) mixdowns. Our VBAP
renderer only uses adjacent loudspeaker pairs for panning which does not
exploit all potentials of such a loudspeaker setup. For the mentioned
formats specialized panning processes have been developed also employing
non-adjacent loudspeaker pairs if desired.

The VBAP renderer is rather meant to be used with non-standardized
setups.

	Pulkki1997

	Ville Pulkki. Virtual sound source positioning using Vector
Base Amplitude Panning. In Journal of the Audio Engineering Society (JAES),
Vol.45(6), June 1997.

Wave Field Synthesis Renderer

Executable: ssr-wfs

The Wave Field Synthesis (WFS) renderer is the only renderer so far
that discriminates between virtual point sources and plane waves. It
implements the simple (far-field) driving function given in [Spors2008]. Note
that we have only
implemented a temporary solution to reduce artifacts when virtual sound
sources are moved. This topic is subject to ongoing research. We will
work on that in the future. In the SSR configuration file
(Section Configuration File) you can
specify an overall predelay (this is necessary to render focused
sources) and the overall length of the involved delay lines. Both values
are given in samples.

	Spors2008(1,2)

	Sascha Spors, Rudolf Rabenstein, and Jens Ahrens. The theory of
Wave Field Synthesis revisited. In 124th Convention of the AES, Amsterdam,
The Netherlands, May 17–20, 2008.

Prefiltering

As you might know, WFS requires a spectral correction additionally to
the delay and weighting of the input signal. Since this spectral
correction is equal for all loudspeakers, it needs to be performed only
once on the input. We are working on an automatic generation of the
required filter. Until then, we load the impulse response of the desired
filter from a .wav-file which is specified via the --prefilter=FILE
command line option (see Section Running SSR) or in the
SSR configuration file
(Section Configuration File). Make sure
that the specified audio file contains only one channel. Files with a
differing number of channels will not be loaded. Of course, the sampling
rate of the file also has to match that of the JACK server.

Note that the filter will be zero-padded to the next highest power of 2.
If the resulting filter is then shorter than the current JACK frame
size, each incoming audio frame will be divided into subframes for
prefiltering. That means, if you load a filter of 100 taps and JACK
frame size is 1024, the filter will be padded to 128 taps and
prefiltering will be done in 8 cycles. This is done in order to save
processing power since typical prefilters are much shorter than typical
JACK frame sizes. Zero-padding the prefilter to the JACK frame size
usually produces large overhead. If the prefilter is longer than the
JACK frame buffer size, the filter will be divided into partitions whose
length is equal to the JACK frame buffer size.

If you do not specify a filter, then no prefiltering is performed. This
results in a boost of bass frequencies in the reproduced sound field.

In order to assist you in the design of an appropriate prefilter, we
have included the MATLAB script
data/matlab_scripts/make_wfs_prefilter.m which does the job. In the
very top of the file, you can specify the sampling frequency, the
desired length of the filter as well as the lower and upper frequency
limits of the spectral correction. The lower limit should be chosen such
that the subwoofer of your system receives a signal which is not
spectrally altered. This is due to the fact that only loudspeakers which
are part of an array of loudspeakers need to be corrected. The lower
limit is typically around 100 Hz. The upper limit is given by the
spatial aliasing frequency. The spatial aliasing is dependent on the
mutual distance of the loudspeakers, the distance of the considered
listening position to the loudspeakers, and the array geometry. See [Spors2006] for
detailed information on how to determine the spatial aliasing frequency
of a given loudspeaker setup. The spatial aliasing frequency is
typically between 1000 Hz and 2000 Hz. For a theoretical treatment of
WFS in general and also the prefiltering, see [Spors2008].

The script make_wfs_prefilter.m will save the impulse response of
the designed filter in a file like wfs_prefilter_120_1500_44100.wav.
From the file name you can extract that the spectral correction starts
at 120 Hz and goes up to 1500 Hz at a sampling frequency of 44100 Hz.
Check the folder data/impules_responses/wfs_prefilters for a small
selection of prefilters.

	Spors2006

	Sascha Spors and Rudolf Rabenstein. Spatial aliasing artifacts
produced by linear and circular loudspeaker arrays used for Wave
Field Synthesis. In 120th Convention of the AES, Paris, France,
May 20–23, 2006.

Tapering

When the listening area is not enclosed by the loudspeaker setup,
artifacts arise in the reproduced sound field due to the limited
aperture. This problem of spatial truncation can be reduced by so-called
tapering. Tapering is essentially an attenuation of the loudspeakers
towards the ends of the setup. As a consequence, the boundaries of the
aperture become smoother which reduces the artifacts. Of course, no
benefit comes without a cost. In this case the cost is amplitude errors
for which the human ear fortunately does not seem to be too sensitive.

In order to taper, you can assign the optional attribute weight to
each loudspeaker in ASDF format (refer to Section [sec:asdf]). The
weight determines the linear (!) weight to be applied to the
respective loudspeaker. It defaults to 1 if it is not specified.

Ambisonics Amplitude Panning Renderer

Executable: ssr-aap

The Ambisonics Amplitude Panning (AAP) renderer does very simple
Ambisonics rendering. It does amplitude panning by simultaneously using
all loudspeakers that are not subwoofers to reproduce a virtual source
(contrary to the VBAP renderer which uses only two loudspeakers at a
time). Note that the loudspeakers should ideally be arranged on a circle
and the reference should be the center of the circle. The renderer
checks for that and applies delays and amplitude corrections to all
loudspeakers that are closer to the reference than the farthest. This
also includes subwoofers. If you do not want close loudspeakers to be
delayed, then simply specify their location in the same direction like
its actual position but at a larger distance from the reference. Then
the graphical illustration will not be perfectly aligned with the real
setup, but the audio processing will take place as intended. Note that
the AAP renderer ignores delays assigned to an individual loudspeaker in
ASDF. On the other hand, it does consider weights assigned to the
loudspeakers. This allows you to compensate for irregular loudspeaker
placement.

Note finally that AAP does not allow to encode the distance of a virtual
sound source since it is a simple panning renderer. All sources will
appear at the distance of the loudspeakers.

If you do not explicitly specify an Ambisonics order, then the maximum
order which makes sense on the given loudspeaker setup will be used. The
automatically chosen order will be one of \((L-1)/2\) for an odd number
\(L\) of loudspeakers and accordingly for even numbers.

You can manually set the order via a command line option
(Section Running SSR) or the SSR configuration file
(Section Configuration File). We therefore
do not explicitly discriminate between “higher order” and “lower order”
Ambisonics since this is not a fundamental property. And where does
“lower order” end and “higher order” start anyway?

Note that the graphical user interface will not indicate the activity of
the loudspeakers since theoretically all loudspeakers contribute to the
sound field of a virtual source at any time.

Conventional driving function

By default we use the standard Ambisonics panning function presented,
for example, in [Neukom2007]. It reads

\[d(\alpha_0) = \frac{\sin\left (\frac{2M+1}{2} \ (\alpha_0 -
\alpha_\textrm{s})\right)} {(2M+1) \ \sin \left (\frac{\alpha_0 -
\alpha_\textrm{s}}{2} \right) },\]

whereby \(\alpha_0\) is the azimuth angle of the position of the
considered secondary source, \(\alpha_\textrm{s}\) is the azimuth
angle of the position of the virtual source, both in radians, and \(M\) is
the Ambisonics order.

In-phase driving function

The conventional driving function leads to both positive and negative
weights for individual loudspeakers. An object (e.g. a listener)
introduced into the listening area can lead to an imperfect interference
of the wave fields of the individual loudspeakers and therefore to an
inconsistent perception. Furthermore, conventional Ambisonics panning
can lead to audible artifacts for fast source motions since it can
happen that the weights of two adjacent audio frames have a different
algebraic sign.

These problems can be worked around when only positive weights are
applied on the input signal (in-phase rendering). This can be
accomplished via the in-phase driving function given e.g. in [Neukom2007]
reading

\[d(\alpha_0) = \cos^{2M} \left (\frac{\alpha_0 - \alpha_\textrm{s}}{2}
\right) \ . \nonumber\]

Note that in-phase rendering leads to a less precise localization of the
virtual source and other unwanted perceptions. You can enable in-phase
rendering via the according command-line option or you can set the
IN_PHASE_RENDERING property in the SSR configuration file (see
section Configuration File) to be
TRUE or true.

	Neukom2007(1,2)

	Martin Neukom. Ambisonic panning. In 123th Convention of the
AES, New York, NY, USA, Oct. 5–8, 2007.

Distance-coded Ambisonics Renderer

Executable: ssr-dca

Distance-coded Ambisonics (DCA) is sometimes also termed “Nearfield Compensated Higher-Order Ambisonics”. This renderer implements the driving functions from [Spors2011]. The difference to the AAP renderer is a long story, which we will elaborate on at a later point.

Note that the DCA renderer is experimental at this stage. It currently supports orders of up to 28. There are some complications regarding how the user specifies the locations of the loudspeakers and how the renderer handles them. The rendered scene might appear mirrored or rotated. If you are experiencing this, you might want to play around with the assignment of the outputs and the loudspeakers to fix it temporarily. Or contact us.

Please bear with us. We are going to take care of this soon.

	Spors2011

	
	Spors, V. Kuscher, and J. Ahrens. Efficient Realization of Model-Based Rendering for 2.5-dimensional Near-Field Compensated Higher Order Ambisonics. In IEEE WASPAA, New Paltz, NY, USA, 2011.

Generic Renderer

Executable: ssr-generic

The generic renderer turns the SSR into a multiple-input-multiple-output
convolution engine. You have to use an ASDF file in which the attribute
properties_file of the individual sound source has to be set
properly. That means that the indicated file has to be a multichannel
file with the same number of channels like loudspeakers in the setup.
The impulse response in the file at channel 1 represents the driving
function for loudspeaker 1 and so on.

Be sure that you load a reproduction setup with the corresponding number
of loudspeakers.

It is obviously not possible to move virtual sound sources since the
loaded impulse responses are static. We use this renderer in order to
test advanced methods before implementing them in real-time or to
compare two different rendering methods by having one sound source in
one method and another sound source in the other method.

Download the ASDF examples from http://spatialaudio.net/ssr/ and check out the
file generic_renderer_example.asd which comes with all required data.

	
	individual delay

	weight

	binaural renderer

	-

	-

	BRS renderer

	-

	-

	VBAP renderer

	+

	+

	WFS renderer

	-

	+

	AAP renderer

	autom.

	+

	generic renderer

	-

	-

Table 1: Loudspeaker properties considered by the different renderers.

	
	gain

	mute

	position

	orientation 2

	distance attenuation

	model

	binaural renderer

	+

	+

	+

	+

	+

	only w.r.t. ampl.

	BRS renderer

	+

	+

	-

	-

	-

	-

	VBAP renderer

	+

	+

	+

	+

	+

	only w.r.t. ampl.

	WFS renderer

	+

	+

	+

	+

	+

	+

	AAP renderer

	+

	+

	+

	-

	+

	only w.r.t. ampl.

	generic renderer

	+

	+

	-

	-

	-

	-

Table 2: Virtual source’s properties considered by the different renderers.

Summary

Tables 1 and 2 summarize
the functionality of the
SSR renderers.

	2

	So far, only planar sources have a defined orientation. By default, their
orientation is always pointing from their nominal position to the reference
point no matter where you move them. Any other information or updates on the
orientation are ignored. You can changes this behavior by using either the
command line option --no-auto-rotation, using the AUTO_ROTATION
configuration parameter, or hitting r in the GUI.

Graphical User Interface

Our graphical user interface (GUI) is quite costly in terms of
computation. So we emphatically recommend that you properly configure
the hardware acceleration of your graphics card. If you still have
performance issues make the window as small as possible. The smaller the
window is the less is the processing cost.

The SSR GUI tries to enable samplebuffer support to enable anti-aliasing
of the screen output. It will tell you if it didn’t work out. Check
Fig. 4.1 to get an idea of the influence of
anti-aliasing. One day we will also implement a variable frequency for
the screen update so that you can slow it down if CPU load is too high.
Of course it won’t look as nice then.

[image: _images/anti_aliasing.png]
No anti-aliasing on the left image.

[image: _images/screenshot.png]
Screen shot of the SSR GUI.

General Layout

The graphical user interface (GUI) consists mainly of an illustration of
the scene that you are hearing and some interaction tools. The renderer
type is indicated in the window title. See a screen shot in
Fig. 4.2.

On the top left you will find the file menu where you can open files,
save scenes, and quit the application. So far only the save scene as…
option is available. That means every time to save the current scene you
will be asked to specify the file name. This will be made more
convenient in the future.

Next to the file menu, there is a button which lets you activate and
deactivate the audio processing. Deactivating the audio processing does
not necessarily lower the CPU load. It means rather that the SSR won’t
give any audio output, neither for involved audio files nor for live
inputs.

Next to the processing button, you find the transport section with
buttons to skip back to the beginning of a scene, pause replaying, and
continue/start playing. Note that pausing a scene does not prevent live
inputs from being processed. To prevent audio output switch off
processing (see above). You may also replay while processing is switched
off to navigate to a certain point in time in the respective scene.

In the top middle section of the GUI there is the audio scene time line.
By default, it shows a time interval of two minutes duration. Whenever
the progress exceeds the displayed time interval the latter is shifted
such that the progress is always properly indicated. Below the handle,
there is a numerical indication of the elapsed time with respect to the
beginning of the scene. See Sec. Mouse Actions for
information on how to operate on the time line.

To the right of the time line there’s the CPU load gauge. It displays
the average CPU load as estimated by the JACK audio server on a
block-wise basis. Further right there’s the label to indicate the
current zoom factor in percent.

And finally, on the top right you find the master level meter combined
with the master volume fader. The colored bar indicates an estimation of
the relative maximum audio level in dB, also updated block-wise. The
left boundary of the meter is at -50 dB; the right boundary is at
+12 dB. The black triangle below the colored bar indicates the master
volume in dB. Click somewhere into the widget and the master volume gets
additionally displayed as a number. Note that this meter displays full
scale, i.e. above 0 dB clipping and thus distortion of the output signal
occurs! 0 dB is indicated by a thin vertical line.

In the row below the transport section, you occasionally find some tabs
giving fast access to a number of scenes. These tabs can be defined in a
file. By default, the file scene_menu.conf in the current working
directory is assumed; there is also an option to specify the file name
in the SSR configuration file. Refer to
Sec. Configuration-File. The configuration
file for the tabs may contain something like the following:

This file configures the menu for the scene selection.
#
scenes/dual_mono.asd Guitar######### comments are possible
scenes/jazz.asd Jazz
scenes/rock.asd Rock
#scenes/speech.asd Speech
scenes/live_conference.xml live conference

The syntax is as follows:

	Everything after a hash symbol (#) in a line is ignored.

	A valid entry consists of the path (relative or absolute) to ASDF
file (or pure audio file) followed by space and a short keyword that
will be displayed on the respective tab on the screen.

Of course, also audio files can be specified instead of .asd files. Note
that so far, no syntax validation is performed, so watch your typing. We
furthermore recommend that you keep the keywords short because space on
the screen is limited. Note also that only those tabs are displayed
which fit on the screen.

The SSR always tries to find the file scene_menu.conf in its current
working directory (or at the location specified in the SSR configuration
file). If is does not find it no tabs will be displayed in the GUI. So
you can have several of such files at different locations. We have added
an example in folder data/.

The main part of the screen is occupied by the graphical illustration of
the scene that you are hearing. The orientation of the coordinate system
is exactly like depicted in Fig. 1.1.
I.e., the \(x\)-axis points to the right of the screen, the
\(y\)-axis points to the top of the screen. The origin of the
coordinate system is marked by a cross, the reference is marked by a
rhomb. The direction “straight in front” is typically assumed to be
vertically upwards on the screen, especially for binaural techniques. We
do so as well. Note that in this case “straight in front” means
\(\alpha = 90^\circ\) and NOT \(\alpha=0^\circ\).

In Fig. 4.2 you see a number of sound sources with their
individual audio level meters (combined with their individual volume
sliders) underneath. The left hand boundary of the level meter is at
-50 dB; the right hand boundary is at 0 dB. Spherical sources don’t have
any additional decoration. The wave front and propagation direction of
plane waves are indicated.

You also see icons for the loudspeakers of the current rendering setup
(if the currently applied technique employs any).

Mouse Actions

The GUI is designed such that the most important functionalities can be
accessed via a touch screen. Thus, it mostly employs ‘left clicks’ with
the mouse.

The use of the file and transport section is rather intuitive so we
won’t further explain it here. The time line can be used to jump to a
certain position within the sound scene and it also shows the progress
of the scene. Click into the white/blue area of the time line in order
to jump to a specific point in time, or drag the handle to fast forward
or rewind. Left-clicking to the right of the time line skips forward by
5 seconds, left-clicking to the left of the time line skips back by 5
seconds. Double-clicking on the time line skips back to the beginning of
the scene. Right-clicking on the time line opens an input window in
order that you can numerically specify the time instant to jump to
(refer to Sec. Keyboard Actions).

You can change the zoom either by clicking into the zoom label and
dragging up or down for zooming in or out. Alternatively, you can use
the mouse wheel 1. Clicking and dragging on the background of the screen
lets you move inside the scene. A double-click brings you back to the
default position and also defaults the zoom.

Clicking and dragging on a sound source lets you select and move it.
Note that you cannot directly manipulate the propagation direction of
plane waves. It’s rather such that plane sources always face the
reference point. To change their direction of incidence move the plane
wave’s origin point to the appropriate position. Right clicking 2 on a
sound source opens a window that lists the properties of the source
such as position, volume, etc. Refer to
Fig. 4.3 and
Sec. Source Properties Dialog.

A right mouse click on the scene background 3 lets you select multiple
sound sources via a rubber band.

If you hold the Ctrl key pressed during any mouse action then you
operate on all selected sound sources at the same time (i.e. mute, move,
etc. them).

Click on the SSR logo and you’ll see the About the SSR information.

	1

	On a touchpad on Mac OS, swipe up and down with two finger to zoom in and out (don’t
click!).

	2

	On a touchpad on Mac OS, click with two fingers simultaneously.

	3

	On a touchpad on Mac OS, click with two fingers simultaneously, hold the click and move
one finger, or both fingers simultaneously, or use a third finger to operate the rubber
band.

Source Properties Dialog

[image: _images/screenshot_spd.png]
Source properties dialog

The source properties dialog can be accessed via a right click on a
source and shows information about the actual state of the selected
source. Its main purpose is to provide the possibility of an exact
positioning of sources. The properties fixed position, muted and
model can be changed. Refer to Fig.
4.3 to see the complete list of properties
this dialog shows.

Keyboard Actions

A number of keyboard actions have been
implemented as listed below. Recall that also some keyboard actions are
available when the SSR is run without GUI (refer to
Sec. Running SSR).

	+/-: if no sound source is selected: raise/lower master volume by
1dB,
otherwise raise/lower the selected sources’ volume by 1dB

	Arrow up/down/left/right: navigate in scene

	Space: toggles the play/pause state

	Backspace: skip to beginning of scene

	Return: calibrate tracker (if present). When pressed, the
instantaneous
orientation is assumed to be straight forward (i.e. 90:math:^circ
azimuth)

	Ctrl: when pressed, multiple sound sources can be selected via
mouse clicks or operations can be performed on multiple sources
simultaniously

	Ctrl+Alt: individual sound sources can be deselected from a
larger selection via a mouse click or the rubber band

	Ctrl+a: select all sources

	f: toggles the position-fix-state of all selected sound sources
(sources which can not be moved are marked with a little cross)

	m: toggles the mute state of all selected sound sources (muted
sources are displayed with a grey frame instead of a black one)

	p: toggles the source model between plane wave and point
source

	r: toggles whether or not all sources are always automatically oriented
toward the reference.

	s: if no source selected: unsolos all potentially soloed sources,
otherwise: solos selected sound sources.

	Ctrl+s: opens the save scene as… dialog

	F11: toggles window fullscreen state

	1-9: select source no. 1-9

	0: deselect all sources

	Ctrl+c: quit

	Ctrl+t: open text edit for time line. The format is
hours:mins(2digits):secs(2digits) whereby hours: and
hours:mins(2digits): can be omitted if desired.

	Esc: quit

Network Interface

This is just a short overview about the XML messages which can be sent
to the SSR via TCP/IP. By default, messages have to be terminated with a binary
zero (\0). This can be changed to, for example, a newline / line feed
(\n) or to a carriage return (\r) using one of the following ways:

	Command line:
Use the command line option --end-of-message-character=VALUE
VALUE is the ASCII code for the desired character (binary zero: 0; line
feed: 10; carriage return: 13).

	Configuration file:
Here, there is the option END_OF_MESSAGE_CHARACTER. See the example
data/ssr.conf.example. Use ASCII codes here as well.

The choice of delimiter applies to, of course, both sent and received messages.

WARNING: We did not evaluate the network interface in terms of
security. So please be sure that you are in a safe network when using
it.

Scene

	Load Scene:
<request><scene load="path/to/scene.asd"/></request>

	Clear Scene (remove all sources):
<request><scene clear="true"/></request>

	Set Master Volume (in dB):
<request><scene volume="6"/></request>

State

	Start processing:
<request><state processing="start"/></request>

	Stop processing:
<request><state processing="stop"/></request>

	Transport Start (Play):
<request><state transport="start"/></request>

	Transport Stop (Pause):
<request><state transport="stop"/></request>

	Transport Rewind:
<request><state transport="rewind"/></request>

	Transport Locate:
<request><state seek="4:33"/></request>
<request><state seek="1.5 h"/></request>
<request><state seek="42"/></request> (seconds)
<request><state seek="4:23:12.322"/></request>

	Reset/Calibrate Head-Tracker:
<request><state tracker="reset"/></request>

Source

	Set Source Position (in meters):
<request><source id="42"><position x="1.2" y="-2"/></source></request>

	Fixed Position (true/false):
<request><source id="42"><position fixed="true"/></source></request>

<request><source id="42">
 <position x="1.2" y="-2" fixed="true"/>
</source></request>

	Set Source Orientation (in degrees, zero in positive x-direction):
<request><source id="42"><orientation azimuth="93"/></source></request>

	Set Source Gain (Volume in dB):
<request><source id="42" volume="-2"/></request>

	Set Source Mute (true/false):
<request><source id="42" mute="true"/></request>

	Set Source Name:
<request><source id="42" name="My first source" /></request>

	Set Source Model (point/plane):
<request><source id="42" model="point"/></request>

	Set Source Port Name (any JACK port):
<request><source id="42" port="system:capture_3"/></request>

	New Source (some of the parameters are optional):

<request>
 <source new="true" name="a new source"
 file="path/to/audio.wav" channel="2">
 <postition x="-0.3" y="1" fixed="true"/>
 <orientation azimuth="99"/>
 </source>
</request>

<request>
 <source new="true" name="a source from pd"
 port="pure_data_0:output0" volume="-6">
 <postition x="0.7" y="2.3"/>
 </source>
</request>

	Delete Source:
<request><delete><source id="42"/></delete></request>

Reference

	Set Reference Position (in meters):
<request><reference><position x="-0.3" y="1.1"/></reference></request>

	Set Reference Orientation (in degrees, zero in positive x-direction):
<request><reference><orientation azimuth="90"/></reference></request>

 _images/screenshot_vlc.png
Preferences

Search JACK audio output

- @ Advanced
CPU features.

e
9. Connect to clients matching Binaural-Renderer
e

Spe resaml
SRC resampie
 Visuazatons
B i Covec
 Access modul
< Audio codecs
 Demuxers
Stream fters
 Subtites code
- Video codecs
oS ntertace
Show sott
Simple. Reset Preferences.

_images/signal_processing.png
parameters n

parameters n

parameters n

parameters n

parameters n

Input signal

ame | fame 41 | Bamen +2 [ame n 3

: : : :
— : : !

+ v H !

; + v i
—_ :

' + v
———

: ! | +
—————————————
output signal i ' \ B

e [eame 1 [fame 52 [e 5

_images/screenshot.png
> —] .

uitar Aria > Wozart | a2z > Speech
2 Soprano.

=

=

File v oot W

Vidloncella
Vislin 1 @
@

=
z Cont rabass
=

@Ccmc 108 o

coET(5)

o Cormo 2 (8] B Bessoon S

_images/screenshot_spd.png
Cont rabass

nane Cont rabass

v 177, 1stntrs

distance 2.4ntrs

azimth 431 degs

Fixed position O
Lume o

muted O

“udic ZoUrcs contrabass. wav: channel_1

propertie:

No file specified

Close

_static/comment-bright.png

_images/ssr_logo_mac_30px.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/coordinate_system.png
L4

o

(1) Global coordinate system,

(b) Lacal coordinate system relative to the ref
erence. The latter i indicated by the rhomb.

_images/distance_attenuation.png
45

® o o~ n
& 2

(‘) epriyduwie soinog

05

10

Source distance (m)

_images/anti_aliasing.png

_images/hrir_comp_filters.png
Do T

hit)

0

s

s

0

0z

az

s

——
p—erey

10° 10°
i

——

p—ey

00 20 20w w0 0 w0

¢

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 SoundScape Renderer User Manual

 		
 General

 		
 Introduction

 		
 Quick Start

 		
 Audio Scenes

 		
 Format

 		
 Coordinate System

 		
 Audio Scene Description Format (ASDF)

 		
 Syntax

 		
 Examples

 		
 IP Interface

 		
 Bug Reports, Feature Requests and Comments

 		
 Contributors

 		
 Your Own Contributions

 		
 Compiling and Running the SSR

 		
 Choosing the Operating System

 		
 The Debian Package

 		
 Getting the Source

 		
 Configuring and Compiling

 		
 Dependencies

 		
 Hints on Configuration

 		
 Installing

 		
 Uninstalling

 		
 Compiling and Installing from the Git Repository

 		
 Running the SSR

 		
 Keyboard actions in non-GUI mode

 		
 Recording the SSR output

 		
 Configuration Files

 		
 Head Tracking

 		
 Preparing InterSense InertiaCube3

 		
 Preparing Polhemus Fastrak/Patriot

 		
 Preparing VRPN

 		
 Using the SSR with different audio clients

 		
 VLC Media Player

 		
 iTunes

 		
 mPlayer

 		
 Mac OS X

 		
 JACK on Mac OS X

 		
 Application Bundle

 		
 Building from Source

 		
 Using the GUI

 		
 Running via the Command Line (Terminal)

 		
 Using a Head-Tracker

 		
 MS Windows

 		
 Using the SSR with DAWs

 		
 Known Issues (Linux & Mac OS X)

 		
 make dmg on Mac OS X chokes on symbolic links

 		
 SSR crashes with a segmentation fault on Max OS X

 		
 A file that can’t be loaded results in a connection to a live input

 		
 Conflicting JACK and Ecasound versions

 		
 Annoying Ecasound message

 		
 Ecasound cannot open a JACK port

 		
 Using SSR on Mac OS X El Capitan

 		
 Long paths to audio files on Mac OS X

 		
 Segmentation Fault when Opening a Scene

 		
 Choppy Sound on Cheap (On-Board) Sound Cards

 		
 dylibbundler doesn’t grok Qt Frameworks

 		
 SSR for Mac OS X: qt_menu.nib not found

 		
 Compilation Error on Ubuntu and Archlinux

 		
 Polhemus tracker does not work with SSR

 		
 Missing GUI Buttons and Timeline

 		
 OpenGL Linker Error

 		
 IP interface isn’t selected although boost libraries are installed

 		
 Second instance of SSR crashes

 		
 Audio files with spaces

 		
 Error ValueError: unknown locale: UTF-8 when building the manual

 		
 The Renderers

 		
 General

 		
 Reproduction Setups

 		
 A Note on the Timing of the Audio Signals

 		
 Subwoofers

 		
 Distance Attenuation

 		
 Doppler Effect

 		
 Signal Processing

 		
 Binaural Renderer

 		
 The HRIR sets shipped with SSR

 		
 Preparing HRIR sets

 		
 Binaural Room Synthesis Renderer

 		
 Vector Base Amplitude Panning Renderer

 		
 Wave Field Synthesis Renderer

 		
 Prefiltering

 		
 Tapering

 		
 Ambisonics Amplitude Panning Renderer

 		
 Conventional driving function

 		
 In-phase driving function

 		
 Distance-coded Ambisonics Renderer

 		
 Generic Renderer

 		
 Summary

 		
 Graphical User Interface

 		
 General Layout

 		
 Mouse Actions

 		
 Source Properties Dialog

 		
 Keyboard Actions

 		
 Network Interface

 		
 Scene

 		
 State

 		
 Source

 		
 Reference

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

